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Abstract—The linear and non-linear stability of rotating double-diffusive convection in a sparsely packed
porous medium is investigated considering a non-Darcy equation. In the case of linear theory both marginal
and overstable motions are discussed. In the former case it is shown that the effect of Taylor number and
porous parameter is to make the system more stable. In the latter case, however, it is shown that the
bottom-heavy solute gradient and rotation destabilize the system under certain conditions. By drawing the
stability boundaries in the Rayleigh number plane it is shown that the effect of rotation and porous
parameter is to decrease the region of instabilities. Using the theory of self-adjoint operator the variation
of critical eigenvalue with physical and boundary parameters is studied. In the case of non-linear theory,
both steady and unsteady cases have been considered. In the unsteady case the transient behaviour
concerning the variation of Nusselt number with time has been investigated, by solving numerically a
seventh-order Lorenz model using the Runge-Kutta—Gill method. Interesting results are obtained
by comparing thése results with those of the steady case. Finally, the effect of porous parameter on
streamfunction, isotherms, isohalines and zonal velocity is studied.

1. INTRODUCTION

THE OBJECTIVE of this paper is to study double-
diffusive convection in a porous medium in the pres-
ence of rotation because of its importance in chemical
engineering, petroleum industry, bio-mechanics and
geophysical problems [1]. Furthermore, this study also
throws some light on the physical and mathematical
understanding of the mechanism of heat and mass
transfer in many practical problems.

In the absence of rotation, theoretical [2—4] and
experimental [5] works have been carried out on
double-diffusive convection in a porous medium and it
has been shown that the simultaneous presence of two
components with different diffusivities can give rise,
as in the case of viscous flow [6, 7], to a whole range
of new phenomena. In contrast, very little is known
about the effect of rotation on double-diffusive con-
vection in a porous medium. Recently Chakrabarti
and Gupta [1] have studied this problem and predicted
overstable motions in the case of infinitesimal dis-
turbances and subcritical instabilities in the case of
finite amplitude disturbances. However, their analysis
says nothing about predicting some of the surprising
results that emerge from the linear theory. Even their
finite amplitude analysis, which is based on a per-
turbation technique proposed by Stuart [8] and by
Malkus and Veronis [9}, is restricted to predicting only
the subcritical instabilities from the first non-trivial
eigenvalue and gives no information about the pre-
diction of the amount of heat and mass transfer. These
aspects are discussed in detail in this paper.

We note that rotation affects the hydrodynamic
stability only when the Ekman thickness (which
defines the scale on which the frictional forces are
comparable to the Coriolis force) is of the order of
the pore size or smaller. If this situation is realized the
assumption entering the Darcy law is no longer valid.
Therefore, to realize the effect of rotation we have to
use the non-Darcy equation (see [10, 11]) involving
convective acceleration and the usual viscous force.
For this we have to consider a special type of porous
medium of porosity (which is the ratio of the pore
space to the whole volume of the porous medium [12])
close to unity in which the resistance offered to the
flow by the elements in unit volume of a medium is
sufficiently small so that the non-linear convective
forces arising from the curvature of curvilinear flow
through a porous medium may not be negligible. Fur-
thermore, the effects of viscous stresses caused by the
distortion of the fluid velocity in a porous medium
should be taken into consideration in addition to the
non-linear convective acceleration. The non-Darcy
equation incorporating the inertial and viscous effects
in addition to the Darcy resistance is reported in refs.
[10, 11] and with rotation is discussed in ref. [13].
In this paper we use their non-Darcy equation to
investigate the following :

(i) To understand the phenomena of bifurcation in
the presence of rotation with different values of
the physical parameters of the problem.

(ii) To study the effect of rotation on the region of
salt-finger and diffusive instabilities in the case
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Bi  Biot number, hd/K

d  depth of the fluid layer

g  acceleration due to gravity

h  heat transfer coefficient

H  total heat transport

J(f.g) Jacobian, 0(f, g)/d(x, z)

k*  m*(e?+1)

k, permeability of a porous medium

K thermal conductivity

Nu  Nusselt number

solute Nusselt number

p  frequency, p.+ip

P, porous parameter

q velocity of the fluid, (4, v, w)

R; thermal Rayleigh number

R, solute Rayleigh number

S solute concentration

AS concentration difference between lower
and upper layers

Sh  solute analogue of Bi

T  temperature

temperature difference between lower

and upper layers

NOMENCLATURE

Ta Taylor number

t time coordinate

u, w horizontal and vertical velocity
components

¥V vertical component of velocity induced
by rotation

x,z horizontal and vertical space coordinates.

Greek symbols

wave number

thermal expansion coefficient
solute analogue of «,
thermal diffusivity

solute analogue of x
kinematic viscosity
density of the fluid
Prandtl number

ratio of diffusivities
streamfunction

constant angular velocity
frequency, w, +iw;.

EREIADT =T xFR KK

of infinitesimal disturbances. In particular it will
be shown, as in viscous flow (see [14]), that
under some conditions a double-diffusive, fluid-
saturated, porous layer—stable in the absence of
rotation—Dbecomes unstable in the presence of
rotation and the effect of bottom-heavy solute
gradient is to destabilize the system. These aspects
were not discussed in the work of Chakrabarti
and Gupta [1}.

The available literature on this topic depends on
the assumption of perfect conducting boundaries
which is valid only when the Biot number tends
to infinity. In many practical problems cited
above, it will be of interest to study the effect of
the finite Biot number on the eigenvalue without
going into the detailed numerical computation.
Using the concept of self-adjoint operator (see
[15]) we try to find the effect of Biot number,
solute Rayleigh number, Taylor number and
porous parameter on the monotonicity of critical
Rayleigh number. Our object here is to show
under what conditions the critical Rayleigh num-
ber for marginal convection is an upper bound
for finite Biot number and to find an analytical
relation for the variation of critical Rayleigh
number with respect to solute Rayleigh number,
Taylor number and porous parameter. This
aspect has not been given any attention in the
previous work on double-diffusive convection in
a porous medium.

(iv) To study non-linear convection considering both

steady and unsteady convective motions.

(iif)

2. FORMULATION OF THE PROBLEM

Consider a sparsely packed, porous layer, saturated
with Boussinesq fluid of infinite horizontal extent con-
fined between parallel, stress-free boundaries at z = 0
and z=4d at which the temperatures are 7, and
To—AT, respectively. The layer rotates uniformly
about the z-axis with a constant angular velocity €.
We denote one of the components by § and suppose
that the concentration of § is held at S, and S,—AS
at the lower and upper boundaries, respectively. We
write the total temperature and salinity as

(£,8) = (T, S9—(AT, 48) 5+6, D) (5,5, 1) (1)

where AT, AS>0. In the Boussinesq approxi-
mation the density is taken to be p = p{l
—a(T—To)+a(S—Sy)}, where p, is the density
at temperature T, and concentration S; and «,,
o, > 0. We regard the porous medium as an assem-
blage of small, identical, spherical particles fixed in
the space of porosity close to unity. In this case the
required basic equations for a representative elemen-
tary volume, following refs. [10, 16], are:

oq ~ 1
5;—{- q-V)g+2Qkxq= -;—OVp

P v
+—g——q+Wiq (2
s kpq q (2

oT o N
M~ +@ VT = VT 3)
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%? +(q-V)S = x2S @

Vq=0 )

where q == (4, v, w) is the mean filter velocity of the
fluid, p the pressure, M = (pc)*/(pc); is the dimen-
stonless heat capacity and k, is the permeability of the
porous medium. Since our interest here is a liquid-
saturated, porous medium, the heat capacity ratio, M,
can be assumed, with sufficient accuracy, to be unity.
We note that (2) is similar to the equation given by
Saffman [17] in the case of dusty gas theory. For
simplicity of analysis, we confine ourselves to the two-
dimensional rolls, so that all the physical quantities
are independent of y, We introduce a streamfunction
¥ such that

u= 0z, w=—0y/ox. ©)

Eliminating the pressure from (2) and using the scales
v/d, d*/x and d for velocity, time and distance, respect-
ively, the system (2){(4) may be written using (6), in
dimensionless form, as:

[13~(v2 ~‘)]v2¢
oV 1f dx a6
TUZ.é.g—-E(ta—x- )-&-J(dl Vi (D
2 a

(gt. -—V2)9=—O'RT%:%+GJ(|/” 6) ®

(gr-zvz)):_ B om0

where ¢ = v/, T =k,/k, P, =k /d*, Ry = a,gATd’ v,
R, = a,gASd’ vk, Ta = 4Q%d*v? and ¥ is the zonal
velocity induced by rotation.

The boundary conditions are:

oV
Y=53=0=Z=7-=0 at z=0L (D)

3. LINEAR STABILITY ANALYSIS

The criterion for the onset of convection is obtained
from the linear stability problem by setting the
Jacobian terms in (7)«(10) to zero. To examine the
stability of these equations we look for the solutions
of the form

¥ ~ e sin (rox) sin (xz)

(12)

8, % ~ e cos (nax) sin (nz).

Substituting these into the linearized equations of (7}~
(10) and after some simplification we obtain the
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dispersion relation
!-:; +‘%3 {1+7+420n]
+ pHon*+tfa+2n(l +1)
+ Ry,— R+ R+ plon*(1+1)
+2tn+ Ry, (1+71)
—Ri(t+on)+ Ry (1+om)]

R, R
+‘EG’??[: on e ] 0

(13)

where
w , w2
p= 7(—29 T = RT k¢ s
202 2
i n
R.=R

s kS H TﬂzRTaFa

Ry, =0aTa, =1+ and k%= n¥a*+1).

1
Pik?
We note that this dispersion relation is of fourth order
in the growth rate o, in contrast to the cubic equation
obtained by Rudraiah et al. [3, 4] in the case of
thermohaline convection in a porous medium in the
absence of rotation. For certain strengths of rotation
and concentration gradient the marginal state is valid
depending on the values of ¢, P, and 1, and for other
values overstable motions are preferred. Although
Chakrabarti and Gupta [1] have studied the linear
analysis, their work does not mention the marginal
state, particularly, with regard to predicting the effects
of Ta, R,, v and P, on cell pattern. These are discussed,
separately, in this section.

3.1. Marginal state
There is a marginal state (P, = 0 and P, = () when
Ry = RS, where

. R, mia?+1)° Ta
Re= T e

(14)

provided o* =
2x54+5(n +0.4)x* + 4y’ (y + 1x®

x, satisfies the equation

T
+{n'(n'*+2n'-—t)- ;‘—’}x

{n + }(2x+n)~ (15)

with

i 1
3] o= 1+ *};“;5
The critical wavenumbers tabulated for different
values of Ta and P, are shown in Table 1. This table
clearly depicts the combined effect of rotation and
porous parameter on the critical wavenumber. We see
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Table 1. Critical wavenumbers for different values of P, and Ta

Ta=10 Ta=10 Ta=10° Ta=10* Ta=10° Ta=10° Ta=10" Ta= 108
A «? al al al g ol 5 al
o 0.5222 06815 1.3949 32896 75393 16.7648 36.6539 79.5491
10-1 06265 0.6887 11155 27221 68163 159739 358507 78.7374
10-2 08658 08689 009004 1.1750 2.7408  9.5254 28.6251 71.2861
10-* 09812 09812 09817 09859 1.0282 13818 3.2956 13.5063
10-* 09998 09980 09980 09981 0.9985  1.0030  1.0467  1.4109
10-° 09998  0.9998 09998 09998  0.9998 09999  1.0003  1.0048

that when the resistance offered to the flow by the
elements in unit volume is sufficiently large (i.e. the
usual Darcy law) the effect of rotation is negligible for
values of Ta < 10°. But for larger rotation rates we
see that it, to some extent, overcomes the effect of
porous parameter on the critical wavenumber. When
7 =1 (i.e. Py~ ), (15) can be written as

T
[2x3+3x2——(1+ ?ﬂ’)] (x+1)?=0.

Since (x-+1)? # 0, it reduces to the viscous case dis-
cussed by Shivakumara et al. [15]. The plane surface
of marginal stability on which the relation (14) holds
will be denoted by 2.

3.2. Overstable state

For oscillatory modes P, =0, P, # 0, i.e. P=iP,
where P; has to be real. In this case we can rewrite
(13) in the form

Ry= Tf—--mf;;i‘z;; RS+[nk6—k2 9;
+n2RTa%]/n2az+iwikzN (16)
with
N Riz—-1) 2Ry, (on—1) k*on+1)
kit aHoki+of) 2’
| a7)

The physical quantity Ry must be real, so that (16)
implies that either w; = 0 or N = (. For oscillatory
{w; # 0) neutral solutions, (16) requires N = 0. The
vanishing of N provides a dispersion relation of the
form

Aot Awi+A; =0 (18)
where
A, =K2on+1)
A, = ot — DR +nr6(on— DRy,
+kSon+ Do+ (20)
A, = k¥na?enz— DR +nt%{on— )Ry,
+120 2 on+ 1k

(19)

@n

Since (18) is a quadratic in w?, it can give rise to more

than one positive value of ©? for fixed o* R,, Ta, o,
P and t. This has important implications for the linear
stability of a rotating, doubly-diffusive fluid in a
porous medium. Thus, it is worthwhile to establish
necessary conditions for the existence of two oscil-
latory neutral solutions. From Descartes’ rule of signs
in order for (19) to have two positive roots, it is necess-
ary that A, < 0 and A, > 0, from which it follows,
using (20) and (21), that

2o on— D) Ta+k%on+ D (z* 4+
< nla’e(1—1)R, < nt¥on—1)Ta/n?
+1¥on+ kS
Therefore
0 < k¥(an+1ay? < n*Ta(tin+o)(on—1)(z/n—0)
which is equivalent to requiring that one of the con-
ditions

t<on<l1 (22a)

or

T>o0n>1 (22b)

be satisfied.

The results obtained for the combinations of values
of 1, o and n are described below.

For 7 < on > 1, neither (22a) nor (22b) is satisfied
and no more than one oscillatory neutral solution can
exist for each wavenumber a, for the case R, > 0. In
this range, we have deduced some important infor-
mation about the neutral curves in the Rr—«’ plane by
locating the branch points at which the steady and
oscillatory neutral curves join. This will occur at
wavenumbers for which w; = 0 is a root of (18). Thus
A, () = 0, or equivalently

(o+ D2+ 1) +Bo+2y(ed+ 1)*+[(30 + 1)y?
+o(r—DR/(n* )] (et + 1) +[oy* +0(r - 1)
x (2y—DR/(n*t?)+ (o~ 1) Ta/n ) (ai +1)*
+loy(y—2 (e~ DR/(n*t) +oyTafn N g+ 1)

—op*(t—DR(n*c?) =0 23)

where
v = 1/Pm>.
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This is a fifth-degree equation in a? in contrast to
the cubic equation familiar from the two-component,
rotating fluid in the absence of a porous medium (see
[14]). The branch points can be determined by solving
(23) for fixed values of Ta, R,, o, t and P,. The typical
neutral curves in the R;—o? plane are shown in Figs.
1(a)(c) for two values of porous parameters. From
these figures it is clear that the neutral curves are
connected in a topoligical sense (refs. [14, 18]). This
connectedness allows the linear stability criteria to be
expressed in terms of a single ‘critical thermal Ray-
leigh number’, R$, below which the configuration is
linearly stable and above which the system is definitely
unstable. The numerical determination of R; proceeds
as follows. First determine the number of positive
solutions of (23). If there are none, then no oscillatory
instability is possible. If there are two, then the mini-
mum (over o) of (16) with w? given by (18) gives the
value of R.

When 7 <on <1, it is found that a rotating,
doubly-diffusive porous layer can be destabilized by
increasing R,, i.e. by adding heavy solute to the
bottom. The destabilization manifests itself as a mini-
mum in the R;—R, plot, as shown in Figs. 2(a)-(c) for
P, =10"2, 1073 and 10~* respectively. From these
figures it is evident that for certain combinations of
g, T, P,and Ta there is some intermediate range of R,
in which the porous layer is destabilized by increasing
R, and stabilized by decreasing R,.

In the case of rotating viscous flow, Veronis [19]
has given the physical explanation for the existence
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of subcritical instabilities for infinitesimal overstable
motion and finite-amplitude steady motion based on
the change in phase of dependent field quantities.
Recently, Pearlstein [14], has given a different physical
explanation, based on the concept developed by
Acheson [20], for the curious behaviour that the ad-
dition of a suitably strong ‘bottom-heavy’ density
gradient renders the system unstable, using the concept
of frequency phenomena. The same analogy can be
extended to the case of a porous medium with suitable
change in porous parameter. For this purpose the
graph of frequency against R, is also drawn in Figs.
2(a)~c). These figures show that the destabilization
is associated with a monotonically increasing w,a/k?,
which is a non-dimensional quantity and the range of
destabilizing effect by R, increases as P, decreases.
This is because the diffusion of solute in a porous
medium, for small values of 7, is so slow that substan-
tial changes in the bobbing frequency can be produced
by changes in R, that have little stabilizing effect
via solute diffusion. Thus, the frequency can be ‘tuned’
by adjusting R,. If the frequency is too small, a bob-
bing parcel will always remain in approximate thermal
equilibrium with its environment. If the frequency is
too high, no significant heat transfer will occur into
or out of the parcel in the first place. In either extreme,
the basic overstability mechanism is operating at less
than optimal efficiency. At some intermediate fre-
quency, however, the maximum efficiency is achieved,
and overstable oscillations set in at a lower value of
R than is possible for larger or smaller frequencies.

4000 n
3500 10500}
3000}~ 10000}
2500 9s00|- .
‘o
Ry | Rt L -
-
2000} 000 &
wi=0 o
1500} 8500}
Wi = 0
2
wi>0
1000+ 8000~ !
L (a) L (b)
1) NP - V) A 6ol 4 11iui] Lo
02 10 2 50 ' 02 102 50 02 1 50

FIG. 1. Curves of neutral stability in the R—o? plane for (a) 1= 0.32, 6 = 2.0 Ta = 10°, P, = 10-% and

R,=—1250; (b) 1=0.32, 6 =20, Ta=10%, P, =1

0-2and R, = 10°; (¢) = = 0.32, ¢ = 2.0, Ta = 10%,

P, =10"%and R, = 10%
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FI1G. 2. Variation of Ry and w;o/k® with R,. (a) t = 0.003, ¢ = 0,025, Ta = 10°and P, = 10-2; (b) 7 = 0.003,
6 =0025Ta=6x10°and P, = 10-%; (c) 7 = 0.001, ¢ = 0.002, Ta = 4 x 10® and P =10"%

This is consistent with the results shown in Fig. 2 for is possible. Also (23) gives the number of branch
different values of P, points and the corresponding neutral curves are

For combinations of 7, s and y such that t > o <1  shown in Figs. 1(a)~(c). The neuiral curves are again
neither (22a) nor (22b) is satisfied, so again no more  connected, so that the linear stability analysis need
than one oscillatory neutral solution per wavenumber  only provide a critical value of R; and the associated
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critical wavenumber. A most striking feature observed
is the crossing of the Ta = 0 and Ta = 10° loci for
P, =10"2 R, =4500, 0 = 0.025 and 1t =0.28. For
example, a non-rotating, porous layer stratified
according to Ry = 1.7 x 104, R, = 4500 is predicted by
linear theory to be stable, but when rotating with
Ta = 10°, it is unstable. The basic thermal and com-
positional stratifications are identical in the presence
and absence of rotation so that this apparent desta-
bilization is not produced by a rotation-induced den-
sity rearrangement, such as by baro-diffusion. Similar
results were obtained by Pearlstein [14] for a rotating,
double-diffusive fluid layer in a viscous flow. This
destabilization appears as a minimum in the R~Ta
curve, as shown in Fig. 3. From this figure it is also
clear that the destabilization is associated with an
increase in wo/k? and as w,o/k? goes on increasing,
rotation again serves to stabilize the porous layer.
The existence of such a minimum suggests that this
destabilization by rotation may have a physical basis
similar to that of destabilizing effect of a ‘stable’ den-
sity gradient in certain convection problems, including
the present problem when 7z < on < 1. This can be
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explained as follows. For small values of T4, the fre-
quency o, is relatively small so that the parcel can
remain in approximate density equilibrium with its
environment, via the diffusion of heat and solute. As
Ta increases, however, so does the oscillation
frequency. This has the effect of making it more
difficult for the parcel to remain in density equilibrium
with its surroundings as it bobs up and down, and the
oscillations will grow. Of course, if @, becomes too
large, the basic overstability mechanism will fail
because very little heat or solute will be transferred to
the parcel during a cycle. Thus, we see how instability
can be facilitated by an increase in w, and that if
w; is too small or too large, the basic overstability
mechanism is not very efficient. Again, as explained
before, for some intermediate value of w, the over-
stability mechanism achieves its optimal efficiency,
and convection becomes possible at a lower value of
R, than is possible for smaller or larger values of @,
This is consistent with the results shown in Fig. 3 for
two values of P, Comparing Figs. 3(a) and (b) we
found that the range of destabilizing effect by Ta
increases as P, decreases.

MY |

SRR N N ) llAl A Ao 1 liaa ° AL

10° 10° 10 10° 108
Ta

3.205 195

3-200 190
. o
2 3195 4185
* o
o« 1 >
3190 Jre0

1185 4175

3180 4170

3175 i e agannd 01y J1 65

1 10° 10 10*
Ta

FiG. 3. Variation of Ry and we/k? with Ta. (a) T = 0.28, ¢ = 0.025, R, = 4500 and P, = 107%; (b) t = 0.28,
6 =10002, R, =4x10°and P, = 10-3,
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4. EXAMPLES OF
STABILITY BOUNDARIES

The work discussed in the previous section and that
of Chakrabarti and Gupta {1], depicts only the effect
of rotation and porous parameter on the onset of
convection and is free from establishing its effect on
stability boundaries. Therefore, in this section the
stability boundaries are discussed by taking specific
examples based on the values of 7, o, P, and Ta with
the object of establishing the existence of salt-finger
and diffusive regions.

We substitute P = iP; into (13) and require P; to be
real. This yields a hyperboloidal surface # in (R+, R,,
Ry,) space, whose analytical derivation is given in the
Appendix. The plane boundary £ and the surface
alone still do not determine fully the conditions under
which marginal stable or oscillatory convection may
occur, because there may be a possibility that the
complex roots of the quartic characteristic equation
{13) may become real roots without their parts passing
through zero. Therefore, in this section the possible
positions of the boundaries 2 and # are illustrated.
We define the plane & given by

RT—RS = 0,

on which the net density gradient is statically stable.
By choosing © = 032, ¢ =0.025, P,=10"? 1073,
10—*and Ta = 10% 103, 10°, 10%, the relevant portions
of the intersections of 2, # and &% are drawn in
Figs. 4-6. The ‘relevant portions’ means those which
describe a change in the mode of instability for the
most unstable mode. In these figures the horizontally

Stable

PR S | bk
0.4 08 12 %
Rg x 10

N

Fi16. 4. Stability boundaries for P, = 102, Ta = 105,7 = 0.32
and o = 0.025. The lines are explained in the text.

N. RUDRAIAH ef al.

Fic. 5. Stability boundaries for two values of Ta for
P, = 1073 7 = 0.32 and ¢ = 0.025.

hatched regions give oscillatory modes and the
oblique hatching shows conditions unstable to salt-
fingers. Comparing Figs. 4 and 5 we notice that as Ta
increases, both salt-finger and overstable modes may
be simultaneously unstable under a wide range of

— =16
- preag? /

Stable

FIG. 6. Stability boundaries for two values of P, for Ta = 102,
t = 0.32 and o = 0.025.
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conditions for P, = 102, The effect of rotation and
porous parameter on stability boundaries is depicted
in Figs. 5 and 6, respectively. We found that as Ta
increases it stabilizes the salt-finger region and also
increases the region of stability, i.e. rotation makes
the system more stable. Figure 6 depicts that as P,
decreases the region of stability increases. Also
decrease in P, stabilizes the region of salt-finger.

5. PARAMETRIC PERTURBATION METHOD

In the previous sections we have considered only
the isothermal boundaries. In this section we consider
the behaviour of the critical Rayleigh number with
respect to R, P, boundary parameter (i.e. Biot number)
and Ta'% As an extra result we also obtain expres-
sions for obtaining first order effects on the eigen-
functions. We employ a method which has been used
by Narayanan [21] and Shivakumara er al. [15].
These first-order effects can be calculated using a
modified Greens matrix as the kernel of a matrix
differential operator (see [22]).

From the linearized version of (7) to (10) we define
an operator L as follows:

rD4_(2n2a2+Pl—l)D2 2 B » —
+na(nl+ Pl Ta'’D — oo oo~ 't
—Ta'*D (Dr*—n%?—PY) 0 0
L= » (D*—n'a?) .
noo Roo?
nao 't 0 M
L. Ro? ]

where D = 0/0z.
Now, if we define Q' = [y, V, 6, Z], where the four
vector represents the dependent variables then from

(7)-(10) we have
LQ =0. (24)

To visualize the variation of R§with respect to R,
we differentiate (24) with respect to R, and obtain

LQ=h 25
where
ioloo ™y B _m
h [o, 0,— Y R . mln/Rs]-
Now, if
(a,b) = f a*-bdv (26)
|4

is a suitable inner product where the asterisks rep-
resent complex conjugates then we can show that L
is self-adjoint and the boundary conditions are also
self-adjoint. Thus applying a Fredholm alternative

HMT 29:9-B
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condition to (24) we get
rafRS 1 )

This yields the condition that R% increases if R,
increases. This means that a stabilizing concentration
gradient causes an increase in the critical Rayleigh
number for thermal motions. Equation (25) can be
used to solve for Q and we thus obtain the first-order
effect of an increase in R, about some known value.

The dependence on boundary parameters will help
us in determining the behaviour of thermal Rayleigh
number with Biot (Bi) and Sherwood (Sk) numbers.
We show this because an earlier analysis is for the
special case of Biot and Sherwood numbers going to
infinity. We shall easily see that the obtained Rayleigh
numbers are upper bounds for finite Biot and
Sherwood numbers.

We may differentiate (24) and the attendant bound-
ary conditions with respect to Biot number. This
yields

Rc t
Q= [0, 0,y T 0] (28)
R5

g

where () represents derivatives with respect to Bi and
at the boundary we have

DO+ Bif+6 = 0. 29)

Thus on applying the solvability condition to (28) in
the light of (29) we get after much algebraic manipu-
lation
Rc
2T vy do =

g I?% 1%

1
112
Reo? L 10)% de. (30)
On using the energy equation we will get from (30)

Ol RS
OBi

> 0.

Thus if R < 0 (such as the case of heated from above)
then RS will decrease with increase in Bi. In most cases
we are concerned with the case of fluid heated from
below and so the case of Bi tending to oo provides an
upper bound on R%. Equation (28) is a vehicle for
calculating the first-order effects and a modified
Greens matrix is needed for these calculations (see

[22]).
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We finally consider the effect of 7a and P! on RS
and some interesting conclusions will be drawn. On
differentiating (24) with respect to Ta'/? we get

IO =h (31
where
- T ﬁ%
hi=| —-DV, ,— ¥ —0] 32
[ Dy g 0] (32)
and ~ represents derivatives with respect to Ta'

On applying the solvability conditions we get

o RS

y2 22T o*

Ta s R J; yo* dv
= —J ID|? do+ ’L“J ¥* dv
v g Jv
—Qr%*+ P J |Dy|? dv
1 4

—n2aX(n’a+ Py ‘)j [y dv
14

TRo

- ‘J /> dv—Ta‘“j V*Dy dv. (33)
o Jv v

We use the energy and species continuity equation to
arrive at the conclusion that R$ > 0if R, and R§
are negative and positive, respectively. That is we can
only say that an increase in rotation causes an increase
in RS if we have the most unstable case.

On differentiating (24) with respect to P!, we get

(34

LQ =h,
where

~ nay RS
ht=|(D*—n%dy, V,—— —,0 35
[( may, V" ol ] (39)
and ~ represents derivatives with respect to Pl
On applying the solvability condition we get

— 0*dv = | |Dy|*d
GRCTLW v L| Yl do

+7t2a2J |W|2dD—J [v]>dv.  (36)
v 14

This yields the condition that R$ increases if P
decreases. This means that critical Rayleigh number
increases as the porous medium becomes more dense,
because the resistance offered to the flow per unit
volume of the medium is quite large.

6. FINITE-AMPLITUDE CONVECTION
WITH A LIMITED REPRESENTATION

Linear theory discussed in the previous sections
predicts only the criterion for the onset of convection.
But for flows with Ry > R, the linear stability analy-
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sis is not valid and we have to take into account the
non-linear effects. In this section, we discuss the non-
linear stability of convection of a two-component,
fluid-saturated porous layer in the presence of
rotation using a severely truncated representation of
Fourier series (see [19]).

It is important to note that the effect of non-
linearity is to distort the zonal velocity, temperature
and concentration fields through the interaction of ¥
and ¥, and 8 and  and Z, respectively. As a result,
a component of the form sin (2nax) in the first case
and of the form sin (27nz) in the latter two cases will
be generated.

Therefore, the minimal system which describes
finite-amplitude convection is of the form

¥ = A(?) sin mox sin wz 37
8 = B(t) cos mox sin nz+ C(f) sin 2nz (38)
Z = D(¢) cos max sin nz+ E(f) sin 2nz  (39)
V = F(1) sin nox cos nz+ G(¢) sin 2nax ~ (40)

where the amplitudes 4, B, C, D, E, F and G are
generally functions of time and are to be determined
by the dynamics of the system. Substituting (37)(40)
into (7)—(10) and equating the coefficients of like terms
we get the following set of time-dependent, non-linear
ordinary differential equations:

dA4 neTa'?  mat oL
G = okmA+ — = F+ o5 D=5 B (41)
dB
= —k*B—nogRA—n2acAC (42)
dc oo
4 et
% 4n2C+ ) AB 43)
dD R
— = —1k*D—n*0c AE— 7% noA (44)
dt T
E 00
S a2 iiaast
& dnE+ 5 AD 45)
dF ‘
= —k’onF+n*0cAG—noTa'*A (46)
dG ’
= —@v PG -0 AF. @)

This seventh-order Lorenz model of double-diffusive
convection in a porous medium in the presence of
rotation provides a good example whose solutions are
at any rate qualitatively similar to those of the partial
differential equations from which they are derived
(see [23, 241). Also this truncated system is useful in
establishing the details of the bifurcation structure
and, in particular, of the transition from oscillatory
to steady motions.

6.1. Steady, finite-amplitide convection
The above set of non-linear ordinary differential
equations for the general, time-dependent variables is
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not amenable to analytical treatment and we have to
solve it numerically. However, we note that, for the
steady case (0/0r = 0) these equations reduce to a set
of algebraic equations and eliminating all amplitudes
(except for A) yields, after some algebraic sim-
plification

[ M Ry

where
72 aiol+ 1) Ry, R,
G = ﬁn“a“a’[ o2 ’1+amx2~RT+T
—_— (a2+1) a7 2 2 2, 2 ﬁ_TZ
GI—W k(a +1)11 0'(1+T)+mx2
+ 0 R (1+13)+ 0%~ Ry+ R1)+ B
R,
X("“ ‘)}
i
a, = Krfoiat [k*a*+ Dn{c?an+ B2+ B)
+ 06 Rr,a%+ B (— Rr+ R,
and
7a?
B=—= 1
mla’+4P;

The solution 4 = 0, corresponds to pure conduc-
tion, which we know to be a possible solution though
it is unstable when Ry is sufficiently large. The remain-
ing solutions are determined by solving the cubic poly-
nomial in 4%/8 numerically. So we know the amplitude
and hence we can find the corresponding heat and
mass transfer.

6.2. Convective heat and mass transport

In the study of double-diffusive convection in a
porous medium in the presence of Coriolis forces, the
determination of heat and mass transport across the
layer plays a very important role in many practical
problems discussed in Section 1 and also it paves the
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way to understand the more complicated problems.
We calculate the heat and mass transport in terms of
Nusselt number, Nu, and the solute Nusselt number,
Nw, as functions of Ry, R, Ta, P, o and 1. The
Nusselt number is defined as the ratio of the total
vertical heat flux, H, to the conductive, vertical heat
flux. In the steady state, the vertical heat flux is inde-
pendent of the vertical coordinate, z, and can be evalu-
ated as

H=—x{3T/0Z>. .., (49)

where the angular bracket corresponds to a horizontal
average. With the definition of 7 from (1), (49) can be
written as

Hd 1
Nu= AT i R 2nC. (50)
Similarly, the solute Nusselt number Nuf is defined by
1
Ne=1—-——2nF 51
®D ©D

where B, C, D, E are given by (41)47). If the heat
and mass transport are purely by conduction for
which A =0 and B, C, D, E, F and G are all zero,
then equations (50) and (51) show that Nu and Nu®
are unity.

Qur purpose in this section is to determine the quan-
titative effect of rotation, salinity gradient, diffusivity
ratio, porous parameter, and Prandtl number on heat
and mass transport by thermal and mass advection
terms for which 4 # 0. The results are shown in Table
2 and also depicted in Figs. 7-11. In Table 2 the values
of Nu and Nu* for several values of Ry for Ta = 105,
P =10"% R =10% 7=0.32 and ¢ =0.2, 1.0 and
10.0 are tabulated. From this table we can see that Nu
and Nu® increase with an increase in R; and decrease
in o. From this table we also note that the values of
Nu and N for ¢ =1 and o = 10 are close to each
other than that of ¢ = 0.2. Although the presence of
a stabilizing gradient of solute will serve to inhibit
the onset of convection, the strong finite-amplitude
motions which exist for moderate Rayleigh numbers
tend to mix the solute and distribute it so that the

2.5

2.0
NG®

15

1.0 N i 2 1 " 1 i 1 N H

Ry/R%

-0 1.2 14 18 18 20

FiG. 7. Variation of Nu and Nw* with porous parameter for 1 = 0.81, ¢ = 0.2, Ta = 10f and R, = 10%.
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Table 2. Nu and Nu* (the upper value in each pair) for
Ta = 10°% P, = 10~? and 1 = 0.32 with different values of ¢

R, = 10¢
R =0
Ry =02 o=1.0 o= 100 o=0.2
. 10000 10000  1.0000
75%10 10000  1.0000  1.0000  1.0006
gxiot 10000 10000 1.0000
1.0000  1.0000  1.0000  1.2599
g5y 1ot 10000 10000 10000
: 1.0000  1.0000  1.0000 15522
00x10r 10000 10000 1.0000
: 10000  1.0000 10000 17559
o5xqor 26342 10000 1.0000
' 16277 1.0000  1.0006 19075
Loxies 2763 10000 10000
: 1.8657  1.0000  1.0000  2.0251
Loxies 28874 26849 26304
: 22637 16435 16224 23159
Laxies 29243 27668 27554
' 24450 18737 18472 24719
Lexios 2948 28253 28152
' 25532 20336 20030  2.5607
Soxios 29614 28838 28751
' 26776 22479 22119 2.6857
saxior 29708 2913 29055
' 27476 23868 23473 27524
soxies 29787 29379 29306
: 28094 25233 24806 28121

interior layers of the fluid are more neutrally stratified.
Therefore, as R; becomes large the values of Nu are
seen to approach those with no stabilizing gradient
(R, = 0).

It is further found that subcritical motions are pos-
sible for certain values of Ta, P, g,  and R,. The
resulting delay of the onset of instability by infini-
tesimal disturbances is the main reason for the sub-
critical finite-amplitude instability. For example, for
R, =10% 1 =081, P,= 1072 and ¢ = 0.2 subcritical
motions are possible up to Ta < 10¢ and also it is
found that no subcritical motions are possible, in gen-
eral, for small values of porous parameters. However,
subcritical motions are possible even for small values
of P,only when 7is small. For example, when 1 = 0.01,
subcritical motions are possible even for P, = 104,
10-%. In Figs. 7 and 8 we exhibit the values of Nu and
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25

g
[~

Nu and Nu°

15

RT/R%

F1G. 9. Variation of Nu and Nuw with R, for t = 0.81,¢ = 0.2,
Ta=10%and P, = 10-3,

! P b
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s
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2.0b / - 0-32
b 1] - 081
o II . P
2 M e
i /'/
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y’ Ny
b — - Nu®
10 i " t " L " i " i
0 12 L X3 i3 z
RT/R%

Fi1G. 10. Variation of Nu and Nu* with 1 for ¢ = 0.2, Ta = 10%,
P =10"*and R, = 10°,

Nu* vs Ri/R5 in the form of a graph for different
values of P, and T4, respectively. Figure 7 reveals that
at any given value of Ri/R% the Nusselt number
decreases with decrease in P,, because the resistance
offered to the flow by the element in unit volume of
the fluid is sufficiently large so that the system becomes
more stable. From Fig. 8, however, it is clear that the
Nusselt number decreases with increasing Ta. Thus,
in the case of steady motion the effect of rotation is

Ta =10°, 10*

25

15

1.0

Ta =10% 10*

10 N 1 " | s 1 " 1 " 1

10 17 14 76 ]

RT/R%

12 14 16 18 20

F1G. 8. Variation of Nu and Nu#* with Taylor number for 1 = 0.81,0 = 0.2, P, = 10~ and R, = 10",
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1-0 " L 1 . 1 2 1 2 1

] 1.2 14 16 18 20
RT/R}

F1G. 11. Variation of Nu and Nu* with ¢ for 1 = 0.81, Ta = 10*, P, = 10~2and R, = 10%.

to make the system more stable in addition to the
stabilizing effect of porous parameter. From this fig-
ure it is also clear that for Ta = 10? and 10, the heat
or mass transport are almost the same. This may be
due to the dominating effect of the other parameters
like P, R, and 7. Figure 9 is the plot of Nu and
Nuw for different values of R, for Ta = 10%, ¢ = 0.2,
7 =0.81 and P, = 1073, From this figure we see that
the effect of an increase in R, is to increase heat and
mass transport.

Figures 10 and 11 clearly depict the effect of T and
o on heat and mass transport. From Fig. 10, it is clear
that heat and mass transport increases with decrease
in 1. From this figure it is also evident that the depen-
dence of Nu on diffusivity ratio is weak, at least for
the range shown. However, the situation is different
in the case of Nu®. Figure 11 clearly depicts the effect
of ¢ on heat and mass transport. The values of Nu
and Nu* for 6 = 1 and ¢ = 10 are closer to each other
than those for ¢ = 0.2 and 0.1. Also it is found that
as P, decreases the effect of ¢ on heat and mass transfer
i$ not so significant.

1] U SR W S R

6.3. Streamlines, isotherms, isohalines and Zzonal
velocity distribution

Streamlines drawn for different values of P, and Ta
are shown in Fig. 12. From this figure we can see that
as P, and Ta decrease the wavelength of the cell, 1/,
decreases, i.e. cells will contract.

The isotherm and isohaline patterns are shown in
Figs. 13 and 14 for three values of P, for Ta = 10,
g =0.2, 7= 0.81 and R, = 10* From these figures it
is clear that isotherms and isohalines in the centre of
the cell are more or less vertical (i.e. anvil-shaped)
and become horizontal near x = 0 and x = 1/a for
P, = 10772, i.e. cold fluid sinks and spreads out close
to the bottom boundary and plumes of warm fluid
spread close to the top boundary. But for P, = 103
and 10~ the anvil-shaped plumes are inhibited as can
be seen in Figs. 13(b), (c) and 14(b), (c). This is because
of the strong constraining effect of the porous par-
ameter which suppresses the convection and hence
inhibits the formation of anvil-shaped plumes.

In Figs. 15(a), (b) we show a pattern of contour lines
for the zonal velocity, ¥, for the flow corresponding to

X

F1G. 12. Streamlines for y = 4 and Ry = 1.1 R% (a) with different values of porous parameter for 7 = 0.81,
g = 0.2, Ta = 10% and R, = 10%; (b) with different values of Taylor number for t = 0.81, ¢ = 0.2, P, = 102
and R, = 10*.
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Fi1G. 13. Isotherms for 1=0.81, 6 =02, Ta=10°, R,.=10* and Ry =L.IRS: (8) P,=10"% (b) A,=10""
and {¢) P, = 104

the isotherm patterns of Figs. 13(a), (b), respectively.
From Fig. 15(a) it is clear that there is a strong shift of
maximum and minimum velocities toward the lateral
boundaries. For P, = 1073, however, the flow shows
a nearly horizontal symmetry. This feature may be
due to the stronger constraint imposed by the porous
parameter, with the horizontal temperature gradient
more nearly balanced by the vertical shear of the zonal
velocity.

6.4. Unsteady, finite-amplitude convection

In this section the behaviour of non-linear, periodic
solutions are investigated with the object of under-
standing the transition from periodic oscillations to
behaviour that is apparently chaotic (i.e. solutions
are aperiodic and depend sensitively on the initial
conditions), and to predict the amount of heat and
mass transfer. For this purpose, we integrate (41}
(47) numerically using the Runge-Kutta—Gill method
satisfying the following initial conditions:

A=01 B=1 C=0, D=1,
E=0, F=1 and G=0.

The system (41)(47) possesses an Iimportant
symmetry, for it is invariant under the transformation

(4, B,C, D, E, F, G)
—(—4, —B,C, —D, E, —F, G).

Moreover, these equations describe a contraction
mapping principle in the seven-dimensional space,

since

04 0B oC oD QE OF

a4t Bt ocT bt eE ToF
G
= k2
t3= [k*{20n+1+1}

+4n 1 +1)+@n%a?+1/P)o] < 0.

where the dot denotes the derivative with respect to
time. This implies that trajectories may be attracted
to fixed points, to limit cycles or, possibly, to a strange
attractor.

The results of the numerical study have been docu-
mented in Table 3, considering, for the sake of com-
parison, a representative set of values from the Table
2. It is clear that as time progresses (f > 0.4) our
numerical results approach those of the steady case
discussed in the previous section. To know the tran-
sient behaviour, the variation of Nusselt number with
time has also been considered and is depicted in Fig.
16. It is clear that as Ry increases, the system becomes
more unsteady and shows sensitivity to the initial
conditions. However, as time progresses a steady state
is reached via a transient state.

7. RESULTS

The principal results of the foregoing linear and
non-linear, rotating, double-diffusive convection in a
sparsely packed, porous medium may be summarized
as follows.

10

08

0-6

4

04

02

i}

Gy D%

X

i 4 A ]
[2 047, 08

FiG. 14. Isohalines for t = 0.81, ¢ =0.2, Ta= 10°, R, = 10* and Ry = 1.1R%: (a) P,=10"%, (b) P, =103
and (c) P,=10"%,
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FiG. 15. Contour lines of the zonal velocity for t = 0.81, 0 = 0.2, Ta = 10%, R, = 10° and R; = L.1R%; (a)
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Linear analysis

(i) The critical wavenumber, in steady case, is inde-
pendent of R, and 1 but depends on Ta and P,.
In other words, the cell pattern is influenced only
by rotation and structure of the porous material
and is independent of concentration gradient.
From this, we conclude that the linear stability
boundary is independent of R, and .

(ii) For t < on < 1, a rotating porous layer can be
destabilized by the addition of a bottom-heavy
solute gradient.

(iti) Fort > on < |, we have shown the system which
was stable in the absence of rotation becomes
unstable in the presence of rotation. This desta-
bilization is shown to associate with a mono-
tonically increasing frequency.

(iv) The marginal stability of oscillatory modes
occurs on a hyperboloid in (Ry, R,, Ry,) space
but the space is very closely approximated by its
planar asymptotes for any diffusivity ratio. It is

&5

Ry /Rf =20
=12

4.0k

—_—— —n—

35

3-0

Nu

25

2.0

15
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P | }

N N T
-4 05
Time | t

FiG. 16. Variation of Nusselt number with time (¢) for

Ta=104, R,=10%7t=0.32, P,=10"%and ¢ = 0.2.

{
03 06 07 08

found that the increase in Ta and decrease in P,
is to stabilize the region of salt-finger and to
increase the region of stability.

Parameter differentiation provides result for the
monotonic behaviour with respect to R,, Ta, P,
and surface parameter such as Biot number.

)

Non-linear analysis

From the study of steady, finite-amplitude analysis
we conclude that subcritical instabilities are possible
and the range depend on R,, 1, P,, ¢ and Ta. The heat
and mass transport increase with an increase in Ry,
R, and decrease with an increase in 7z and decrease
in P, because the combined effect of rotation and
porous parameter is to inhibit the onset of convection.
Also decrease in 7 and o increases Nu and Nu'. From
the unsteady case, we see that the numerical results
for large ¢ compare well with the steady case values.
We conclude that the steady state emerges via a tran-
sient state of motion and an increase in R; makes the
system more unsteady.
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Table 3. Time evolution of Nusselt num-
bers for Ta = 10%, Ry = 2x 105, P, = 1072,
R =10,1t=032and o =02

t Nu N
0.02 1.0003 1.0004
0.04 1.0155 1.0266
0.06 1.6512 2.1063
0.08 3.0272 2.9212
0.10 2.5194 2.8025
0.14 2.6793 2.7959
0.20 2.6718 3.0212
0.30 2.67714 29579
0.40 2.6776 2.9612
0.50 2.6776 2.9615
1.0 2.6776 2.9614
2.0 2.6776 2.9614
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APPENDIX

Substituting p = ip, in (13) and equating separately the
real and imaginary parts to zero, we get

4
‘% = P61+ Rr.— Ry +R()

Ry, ., Rii_
+wr;[r;+~a~j’;—nRT+-;]—0 {AD

P = £ s+ Ru(l+0) = Re(on+0)+ Rion+ 1] (A2)
2

where
T
&, =on*+ p +2(1+7)

8, = 1+7+20m
8y = on*+on’t+2mm.

Together, (A1) and (A2) describe the curve
€1 R} + 3R] +¢3RE, + CoRER,+ ¢ Ry Ry + R R,

0 RoA Ca R CoRptco =0 (A3)

where the coefficients are

ey =—(on+7){on+1)

¢ =—(on+1)(on+7)

¢; =—2an(l1+1)

¢y = —2on+ D{on+0+d,(1 +1+20n)
cs=—2on+0) (1 +0)+86:(1+21+0n)
€6 = Aon+ (1 +1)—8,2+1+0n)

¢y = (8,8, —203) (o0 +1)8,8,— %

¢y = —(010,—2d5) (on+1)—8,8,+ 6%
Co = —(8,8,—285) (1 +1)~ 8,85+ d}to~"
co = 03—8,6,0,+ 5%

For oscillatory motions we also require p? > 0in (Al)and
{A2). This is true only if

(on+1)Rr—(on+ DR~ (1 +T)Ry, < 85
and (Ad)
3, —(Ry— R~ Ry )+ M2 20
must be satisfied on (A3), where

M= Ry + R+ R+ 2(— RR, — R R, + RLR,)

R B
—4m(-«1zfr+ — ;”T—)+2§,(~—R§+R;+R«}a)+5%-4m2.

Whenever t > 0 and oy < 1, (A3) is an hyperboloid of which
inequalities (Ad) select the appropriate branch: the con-
ditions at which the most unstable oscillatory mode is mar-
ginally stable.
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EFFET DE LA ROTATION SUR LA CONVECTION LINEAIRE ET NON LINEAIRE
DANS UN MILIEU POREUX DISPERSE FIXE

Résumé—La stabilité linéaire et non linéaire de la convection avec rotation dans un milieu poreux dispersé
fixe est étudiée en considérant une équation non darcienne. Dans le cas d'une théorie linéaire les mouvements
marginaux et superstables sont discutés. Dans le premier cas, on montre que I'effet du nombre de Taylor
et du paramétre de porosité est de rendre le systéme plus stable. Dans le dernier cas, on montre que le
gradient du soluté lourd en bas et la rotation déstabilisent le systéme sous certaines conditions. En tragant
les frontiéres de stabilité dans le plan du nombre de Rayleigh, on montre que l'effet de la rotation et du
parametre de porosité est de diminuer la région d'instabilité. A partir de la théorie de 'opérateur self-
adjoint, la variation de la valeur propre critique est étudiée avec les paramétres physiques et limites. Dang
le cas de la théorie linéaire, on considére 4 la fois les cas stables et instables. Dans le cas instable, le
comportement transitoire de la variation du nombre de Nusselt avec le temps est étudié en résolvant un
modéle de Lorenz du septieme ordre par une méthode numérique de Runge-Kutta—Gill. Des résultats
intéressants sont obtenus en comparant ces résultats avec ceux du cas stable. Finalement, est étudié Ueffet
du paramétre de porosité sur la fonction de courant, les isothermes, les isohalines et la vitesse.

EINFLUSS DER ROTATION AUF DIE LINEARE UND NICHTLINEARE
KONVEKTION IN EINEM HOCHPOROSEN MEDIUM

Zusammenfassung—Die lineare und nichtlineare Stabilitdt der Konvektion in einem rotierenden, hoch-
pordsen Medium wurde mit Hilfe einer Nicht-Darcy-Gleichung untersucht, Fiir den Fall der linearen Theo-
rie wurden Grenz-Bewegungen und iiberstabile Bewegungen diskutiert. Im erstgenannten Fall zeigt sich,
daB der EinfluB von Taylor-Zahl und Porositdt das System stabiler macht. Im letzteren Fall zeigt sich,
daB Lésungsgradient und Rotation das System unter bestimmten Bedingungen destabilisieren. Beim
Einzeichnen der Stabilitdtsgrenzen in die Rayleigh-Zahlen-Ebene zeigt sich, daB Rotation und Porositit
das Gebiet der Instabilitdten verkleinern. Durch Anwendung der Theorie des ‘self-adjoint operators’ wurde
die Abhingigkeit des kritischen Eigenwertes von physikalischen und Rand-Parametern untersucht. Im Fall
der nichtlinearen Theorie wurde das stationdre und instationdre Verhalten betrachtet. Im instationdren
Fall wurde das transiente Verhalten der Nusselt-Zahl untersucht. Dies geschah durch numerisches Ldsen
eines Lorenz-Modells 7. Ordnung unter Anwendung der Runge-Kutta-Gill Methode. Beim Vergleich
dieser Ergebnisse mit denen des stationdren Falles ergaben sich interessante Resultate. Zum Schiu wurde
der Einflul der Porositdt auf Stromfunktion, Isothermen, Linien konstanten Salzgehaltes und Zonen-
Geschwindigkeit untersucht.

BJAUSAHUE BPAILEHMS HA JUHENHYIO U HEJTUHENHYIO AUPOYIUOHHVIO
KOHBEKLUIO B HEIJIOTHOHW IMTOPUCTOW CPEIE

Aunoramms—HccaenyroTes nuHeHHas M HenuHeHHasd YCTOHYMBOCTH KOHBEKUMH TDH BPAlUCHHM B He-
MIOTHOH MOPHUCTOH CpeAe, TEueHHE B KOTOpOH He mopuuHsercs 3akouy [apcu. B cnywae auneiinoit
TEOPHH PAacCMATPHBAIOTCS MAPrHHAJIBHOE M CBepXycToHumMBOe nmwxenns. floxaszaHo, 4To B nepsoM
cnyvae Bnusuue wHcna Teitnopa n koadduunesTa mopacTocTH JOMKHL cAelaTh cHCTEMY Gonee cTa-
GunbHoi. Bo BTOpOM Ciiydae, 01HaKO, IPH ONPEIENICHHBIX YCIOBUAX IPAJHEHT KOHIEHTPAUHH TAKEIOrO
PacTBOPEHHOI'0 BEIUECTBA M BpallieHHEe AeCTalHIMIHPYIOT cHcTeMy. C NOMOLUBIO rpaduKa s TPAHHLL
YCTOMYHMBOCTH HA NJITOCKOCTH 4ucen Panes moka3ano, 4TO BIMAHME BPALUEHMS ¥ NApaMeTPa MOPHCTOCTH
IOJOKHO yMEHBUIATE BeauuuHy obnact HeycroiiwmpocTeil. MaMeHeHue KpHTHYECKOTO COGCTBEHHOTO
3HAYEHUA B 3ABHCMMOCTH OT (H3MYECKUX M IDAHMYHBIX YCTOBHH MCCIEAYETCS MO TEOPHH CaMOCONDS
KEHHOTO oneparTopa. B HenuueiiHOH TeopuM PAacCMaTpPHBAIOTCH CHYYaM YCTOWYMBOHR M HeycTORYMBOH
KOHBeKIMH. B Ciyvae HeycTOHYMBOH KOHBEKUMH HEPEXOMHBIR PEXUM, CBA3AHHBIA C HIMEHEHHEM BO
BpeMenH uucna HyccensTa, uccneAyercs nyTeM peuleBus mogenu JlopeHua ceasMmoro nopsixa
meronom Pyure-Kyrra-T'unina. ITonyuenHbie PE3yNbTATHI CPABHHBAIOTCA ¢ AAHHBLIME IS Chy4as
YCTOHYMBOU KOHBekUMH. Kpome 3TOro, H3y4aeTcs BiIMsHME MapaMeTpa MOPUCTOCTH Ha QYHKIHMIO TOKa,
H30TEPMBbI, H30TAJIHHbLI H 30HAJIbHBIE CKOPOCTH,
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